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Abstract—Accelerating the inference of Convolution Neural
Networks (CNNs) on edge devices is essential due to the small
memory size and poor computation capability of these devices.
Network quantization methods such as XNOR-Net, Bi-Real-
Net, and XNOR-Net++ reduce the memory usage of CNNs
by binarizing the CNNs. They also simplify the multiplication
operations to bit-wise operations and obtain good speedup
on edge devices. However, there are hidden redundancies in
the computation pipeline of these methods, constraining the
speedup of those binarized CNNs.

In this paper, we propose XOR-Net as an optimized com-
putation pipeline for binary networks both without and with
scaling factors. As XNOR is realized by two instructions XOR
and NOT on CPU/GPU platforms, XOR-Net avoids NOT oper-
ations by using XOR instead of XNOR, thus reduces bit-wise
operations in both aforementioned kinds of binary convolution
layers. For the binary convolution with scaling factors, our
XOR-Net further rearranges the computation sequence of
calculating and multiplying the scaling factors to reduce full-
precision operations. Theoretical analysis shows that XOR-Net
reduces one-third of the bit-wise operations compared with
traditional binary convolution, and up to 40% of the full-
precision operations compared with XNOR-Net. Experimental
results show that our XOR-Net binary convolution without
scaling factors achieves up to 135× speedup and consumes no
more than 0.8% energy compared with parallel full-precision
convolution. For the binary convolution with scaling factors,
XOR-Net is up to 17% faster and 19% more energy-efficient
than XNOR-Net.

Keywords-CNN Acceleration; Neural Network Quantization;
Binary Neural Networks; Edge Devices;

I. INTRODUCTION

Deep Convolution Neural Networks (CNNs) are both

computation and memory intensive. For example, state-of-

the-art CNN EfficientNet-B7 [1] has 66 million parameters

with 37 billion Float-Point Operations (FLOPS). Such large

CNNs are hard to be deployed on edge devices with lim-

ited computation resources and small memory. Therefore,

acceleration methods including transformation [2], pruning

[3], and quantization [4] have been proposed to alleviate this

execution problem.

Among the acceleration methods, quantization utilizes

low-precision numbers instead of 32/64-bit floating-point

numbers to represent the weights and activations, thus re-

duces the storage cost for CNN inference. Quantization also

brings lower latency because low-precision computations are

faster than full-precision ones and may reduce the hardware

complexity of accelerators. For example, QNNPACK [5]

utilizes 8-bit integers and achieves high-performance CNN

inference on mobile platforms.

Among these quantization methods, Binary Neural Net-

work [6] quantizes both the filters and the activations to 1-bit

numbers and achieves extreme storage-saving and speedup.

As both the activations and the filters are ’0’s and ’1’s,

the binary convolution is now equivalent to the XNOR

operations followed by pop-count (counting the number

of ”1”s in a binary integer) operations, resulting in much

faster computation speed than the convolution using 32-bit

float point Multiplication Accumulation (MAC) operations.

However, binarization brings large accuracy loss. So XNOR-

Net [7] and XNOR-Net++ [8] add 32-bit full-precision

scaling factors to the quantized filters and activations to

improve the accuracy of binarized networks.

However, not only these works but also latest works such

as Bi-Real-Net [9] and CI-BCNN [10] take XNOR and pop-

count operations for binary convolution without considering

the hardware implementation. As there is no XNOR instruc-

tion on most CPU and GPU platforms [11]–[14], they have

to conduct XNOR using two instructions (XOR and NOT)

instead of one and degrade the speedup of binary neural

networks. Besides, there exist many hidden redundancies in

XNOR-Net when calculating the scaling factors and getting

the final output, which are hardly noticed unless viewing

the combined execution process in consecutive layers. We

have observed that these redundant full-precision operations

account for 25-40% FLOPS in convolution layers and seri-

ously affect the computation efficiency.

In this paper, we propose XOR-Net as an efficient binary

network inference method to solve these problems. First,

as XOR is a universal instruction in off-the-shelf CPU

and GPU platforms [11]–[14], XOR-Net uses XOR instead

of XNOR for binary convolution and finishes the bit-wise

operation within one cycle instead of two, reducing all the

NOT operations compared with traditional methods. Second,

for those binary networks with scaling factors, XOR-Net

moves the multiplication of the scaling factor matrix to

the next layer and moves constants to the scaling factor

of the weights, so XOR-Net further reduces up to 40%
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full-precision operations compared with XNOR-Net. By

carefully modifying the following computation after the bit-

wise operations, XOR-Net produces the same convolution

results and keeps the same neural network accuracy as

traditional binary methods without bringing new overhead.

Our proposed XOR-Net can be implemented on all

general-purpose platforms including CPU and GPU which

provide XOR and pop-count instructions. We implement

XOR-Net on a RISC-V based edge device GreenWaves

GAP8, taking advantage of reduced branching operations,

loop unrolling, and bit-level and filter-level parallelism. We

evaluate the actual speedup and energy consumption of

XOR-Net on the edge device at the layer level with different

configurations on the input size, the input channel, and

the filter number. Experimental results show that XOR-Net

achieves 81-135× speedup and consumes no more than 0.8%

energy compared with the parallel full-precision layers. For

binary convolution with scaling factors, XOR-Net is 10-

17% faster and 19% more energy-efficient than XNOR-Net.

Please note that the speedup and energy efficiency are gained

without any accuracy cost.

The rest of this paper is organized as follows. Section

2 introduces related works and Section 3 discusses ex-

isting binary convolution methods and our observations.

Section 4 describes our proposed XOR-Net with a theoretical

analysis provided, while Section 5 details our XOR-Net

binary convolution implementation. Section 6 provides the

experimental results and Section 7 concludes our works.

II. RELATED WORKS

Quantization is a popular CNN acceleration method. For

example, 16/8-bit quantization has been adopted by deep

learning frameworks TensorFlow Lite and PyTorch, and

hardware accelerators Google TPUs and Nvidia GPUs.

Among different quantization methods, 1-bit quantization

is an extreme case, which has been proposed and studied

by many works. Binary Connect [15] quantizes the weights

into {+1, -1} to replace the multiplication operations with

additions and subtractions. BNN [6] quantizes both the input

activations and weights into one bit to achieve the extreme

speedup. XNOR-Net [7] and XNOR-Net++ [8] add scaling

factors to the binarized weights and activations to improve

the accuracy. Bi-Real-Net [9] adds real value activation short

cuts to improve the information representation ability and

CI-BCNN [10] mines channel-wise interactions to reduce the

sign error, but these works focus on improving the accuracy

without considering the inefficiency of XNOR operations.

Meanwhile, BMXNet v1 and v2 [16], [17] implement binary

convolution layers including XNOR-Net in MXNet and

optimize the GEMM kernels for high speedups, but neither

of the works has noticed the computation redundancy in

XNOR-Net nor removed them.

III. MOTIVATION

Existing methods such as BNN, Bi-Real-Net, and CI-

BCNN use binary convolution without scaling factors,

whose general steps include binarizing filter weights, bina-

rizing the input activations, and performing bit-wise convo-

lution. XNOR-Net and XNOR-Net++ use binary convolution

with scaling factors, whose basic steps also include calcu-

lating the scaling factors of the filters and the activations

as well as multiplying the scaling factors to the bit-wise

convolution results.

A. BCNN: Binary Convolution without Scaling Factors

The binarization of input activations X and weights W is

usually realized by getting the sign bits and then packing the

single sign bits into 32/64-bit integers. So there will be high

data parallelism when convoluting the quantized activations

QX and weights QW to get the layer outputs O.

QX = sign(X) (1)

QW = sign(W ) (2)

O = QX ∗QW (3)

As the quantized activations and weights are all +1 and

-1 represented by ”0” and ”1”, the dot product inside

the convolution can be finished using XNOR and pop-

count. Suppose we need to calculate the dot product of

two vectors VQX and VQW from the quantized activations

and quantized weights respectively as equation (4)-(7) show.

XNOR operations get ”1” when the operands are both ”0”s

or ”1”s, so the summation of the pop-count result sum
stands for the number of +1 in the dot product result. N is

the total bits of the XNOR result, so N−sum is the number

of -1 in the dot product result. Finally, the dot product result

is obtained as equation (6)-(7) show.

sum = popcnt(VQX XNOR VQW ) (4)

= popcnt(NOT (VQX XOR VQW )) (5)

VQX · VQW = sum− (N − sum) (6)

= 2× sum−N (7)

We notice that the XNOR is realized using XOR and NOT

operations inside CPU and GPU platforms [11]–[14], so it is

not efficient to use XNOR for the quantized convolution. We

can reduce the number of bit-wise operations in the binary

convolution by using XOR instead of XNOR. Thus we

propose another convolution scheme called XOR-Net which

uses XOR and pop-count to achieve the same functionality

without the NOT operation.

B. XNOR-Net: Binary Convolution with Scaling Factors

1) Calculating the Scaling Factors: In XNOR-Net, the

scaling factor α of a filter is the average absolute value of

its weights. W ∈ R
c×kh×kw is the weight tensor with three

dimensions: the channel, the kernel height, and the kernel
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width. n = c × kh × kw is the total number of weights in

a filter. The scaling factors of filters are calculated during

training, so they have no computation cost in inference.

α =
1

n
‖W‖L1 (8)

As equation (9)-(10) show, X ∈ R
c×h×w is the 32-bit

full-precision input tensor with three dimensions: channel,

height, and width. The original XNOR-Net performs the

following steps to get the scaling factor matrix of the input

activations. First, calculate the average absolute value matrix

A ∈ R
h×w of the input tensor X across the channel. Second,

do a fake convolution between A and I ∈ {1}kh×kw , a

matrix full of ones with the same size as kernels. The fake

convolution adds up the corresponding elements of A and

gets the scaling factor matrix K ∈ R
oh×ow of the activations.

A =
1

c

c∑
j=1

‖Xj,:,:‖ (9)

K =
1

khkw
A ∗ I (10)

However, since the numbers of the input channel, the

kernel height, and the kernel width are known before getting

the input activations, there is no need to multiply constants 1
c

and 1
kwkh

when calculating each scaling factor matrix of the

activations. We can move these two constants to the scaling

factors of the weights that are calculated during training to

reduce the computation cost of inference.

2) Multiplying the Scaling Factors: In the last step of

XNOR-Net, the bit-wise convolution result needs to multiply

the scaling factors mentioned in the previous subsection.

The bit-wise convolution result O ∈ N
oh×ow multiplies the

scaling factor matrix K of the input activation in an element-

wise manner �, then multiplies the scaling factor α of the

filter weights. After all, we get Y ∈ R
oh×ow the final output

of convolution with one filter.

O = QX ∗QW (11)

Y = O �K · α (12)

The original XNOR-Net produces the final output by

multiplying the same scaling factor matrix K on the bit-wise

convolution result with every filter O. As Fig.1 (a) shows

in the bracket, this leads to many repeating multiplications

at the matrix level. Viewing the whole computation pipeline

across layers in Fig.1 (a), we observe that there is an Avg.

function (get the average absolute values across the channel)

in the next layer. Therefore, we can move the element-wise

multiplication K outside the average function to remove the

unnecessary calculations as Fig.1 (b) shows.

IV. PROPOSED BINARY CONVOLUTION

We propose XOR-Net in this paper to avoid using the

NOT operations repeatedly. Our XOR-Net utilizes XOR, a

(a)

(b)

Figure 1. Illustration of the computation pipeline of binary convolution
with scaling factors in consecutive layers. (a) The original XNOR-Net
algorithm. (b) The proposed optimized XOR-Net algorithm.

universal instruction in off-the-shelf CPU and GPU plat-

forms, and pop-count as the main operations in the bit-wise

convolution. Because both the binary convolution layers with

and without scaling factors need to conduct bit-wise convo-

lution, XOR-Net is applicable to both of them. Especially,

for the binary convolution with scaling factors like XNOR-

Net, XOR-Net rearranges the computation pipeline based on

the motivations mentioned in the previous section and further

reduces the number of full-precision operations dealing with

scaling factors.

A. XOR-Net: Binary Convolution without Scaling Factors

XOR-Net keeps the same computation sequence as equa-

tion (1)-(3) but changes the dot product inside the bit-wise

convolution according to equation (13)-(15). As the vectors

VQX and VQW of quantized activations and quantized

weights are all +1 and -1 represented by ”0” and ”1”,

XOR operations get ”1” when the operands include one

”0” and one ”1”, so the summation of the pop-count result

sum stands for the number of -1 in the dot product result.

Similarly, N is the total bits of the XOR result, so N−sum
is the number of +1 in the dot product result. Therefore,

we obtain the dot product result using only one XOR and

one pop-count. Compared with existing methods, XOR-Net

reduces one NOT operation for all the quantized activations.

sum = popcnt(VQX XOR VQW ) (13)

VQX · VQW = (N − sum)− sum (14)

= N − 2× sum (15)

B. XOR-Net-S: Binary Convolution with Scaling Factors

For binary convolution with scaling factors, our XOR-Net

moves the multiplication of some constants to the scaling

factor of the weights based on the motivation in Section

III.B. XOR-Net also changes the way to produce the output

in consecutive convolution layers as Fig.1 (b) shows.

α′ =
1

khkw

1

c
α =

1

ckhkwn
‖W‖L1 (16)

Equation (16) shows the calculation of the new scaling

factor α′ of the filter weights. Usually, α′ is determined
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during training, so we do not need to calculate it any

more in the inference. Our method can be applied to pre-

trained original XNOR-Net models by calculating α′ from

the original scaling factor α, which is only a one-time cost.

A′ =
c∑

j=1

‖X:,:,j‖ (17)

K(i) =

{
A′ ∗ I, the first layer

(A′ �K(i−1) ∗ I, otherwise
(18)

O = sign(X)sign(W ) (19)

Y = X ∗W ≈
{
O · α′, not the last layer

O �K(i) · α′, otherwise
(20)

Equations (17)-(20) show the calculating of scaling factor

matrix of the activations and getting the layer output. Our

method follows the same basic logic as the original XNOR-

Net algorithm and optimizes the computation pipeline across

layers in convolution blocks. For the first convolution layer

using our method, the average absolute value matrix A′ will

do the fake convolution to get the scaling factor matrix K.

Then the intermediate result O will not multiply the scaling

factor matrix K, but convey it to the next layer. If this is

a consecutive layer after the first one, A′ will multiply the

scaling factor matrix of the previous layer K(i−1) to get

the scaling factor matrix of this layer K(i), and K(i) will

be conveyed to the next layer as well. Only when it’s the

convolution layer before pooling layers or at the end of the

convolution block, the intermediate result O multiplies the

scaling factor matrix K(i) to get the layer output.

C. Theoretical Operation Reduction

XOR-Net uses XOR and pop-count instead of XOR,

NOT and pop-count for bit-wise convolution to remove the

computation redundancy introduced by XNOR. So XOR-Net

reduces one-third of bit-wise operations in binary convolu-

tion layers both with and without scaling factors. As for the

full-precision operation reduction in binary convolution with

scaling factors, we take VGG-16 and YOLOv2 as example

CNNs to compare with the original XNOR-Net. Our XOR-

Net-S is also applicable to more complicated CNNs such

as inception and residual blocks as long as we multiply the

scaling factor matrix in convolution layers before pooling,

concatenation and addition layers/nodes. Table I lists the

convolution layers of the example CNNs in blocks according

to the pooling layers in between.

Compared with the original XNOR-Net, XOR-Net

achieves up to 40% full-precision operation reduction in

convolution layers with 3 × 3 kernels and about 25% full-

precision operation reduction in those with 1×1 kernels. The

convolution layers before pooling layers (such as layer 4, 7,

10 and 13 in VGG-16 and layer 5, 8 and 13 in YOLOv2)

have to multiply the scaling factor matrix to produce the

exact final output, so they have almost the same number of

full-precision MACs as the original XNOR-Net.

D. Accuracy and Limitation

Our method maintains the same accuracy as the original

methods like BNN, Bi-Real-Net and XNOR-Net. XOR-

Net is an efficient computation pipeline for binary network

inference, and it provides the same output as shown in

the mathematical equations, so XOR-Net keeps the same

accuracy as the training schemes. If binary networks achieve

higher accuracy with new training methods, doing inference

using XOR-Net will achieve the same high accuracy.

The limitation of XOR-Net lies in the binary convolution

with scaling factors. Changing the computation sequence in

XNOR-Net involves conveying the scaling factor matrix to

the next convolution layer, which means, the layer outputs

in the first and consecutive layers are not the same final

results as the original XNOR-Net in these layers. This will

not affect activation layers such as ReLU and Leaky ReLU.

Because the scaling factor matrix only consists of positive

numbers, the ReLU output only relies on the convolution

result which contains both negative and positive numbers.

However, we have to multiply the scaling factor matrix

and cannot get high speedup compared with XNOR-Net

in those convolution layers before pooling layers including

Max Pooling and Average Pooling (e.g. VGG-16 layer 4).

Because the input shape is different after pooling, the scaling

factor matrix will not fit into the next convolution layer.

Table I
FULL-PRECISION MAC OPERATION REDUCTION RATIO OF THE

PROPOSED XOR-NET ALGORITHM

VGG-16 Input size Filter size Ratio

Layer 3 64,112,112 128,64,3,3 39.39%

Layer 4 128,112,112 128,128,3,3 0.25%

Layer 5 128,56,56 256,128,3,3 39.69%

Layer 6 256,56,56 256,256,3,3 33.03%

Layer 7 256,56,56 236,256,3,3 0.13%

Layer 8 256,28,28 512,256,3,3 39.84%

Layer 9 512,28,28 512,512,3,3 33.18%

Layer 10 512,28,28 512,512,3,3 0.06%

Layer 11 512,14,14 512,512,3,3 33.25%

Layer 12 512,14,14 512,512,3,3 33.18%

Layer 13 512,14,14 512,512,3,3 0.06%

YOLOv2 Input size Filter size Ratio

Layer 3 64,56,56 128,64,3,3 39.39%

Layer 4 128,56,56 64,128,1,1 25.19%

Layer 5 64,56,56 128,64,3,3 0.30%

Layer 6 128,28,28 256,128,3,3 39.69%

Layer 7 256,28,28 128,256,1,1 25.10%

Layer 8 128,28,28 256,128,3,3 0.15%

Layer 9 256,14,14 512,256,3,3 39.84%

Layer 10 512,14,14 256,512,1,1 25.05%

Layer 11 256,14,14 512,256,3,3 39.77%

Layer 12 512,14,14 256,512,1,1 25.05%

Layer 13 256,14,14 512,256,3,3 0.08%
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V. IMPLEMENTATION ON AN EDGE DEVICE

We implement XOR-Net convolution layers on Green-

Waves GAP8, a RISC-V based ultra-low power edge pro-

cessor showed in Fig.2. We take the convolution benchmark

suites [18] developed by GreenWaves Technologies as ref-

erence implementations to optimize our benchmark codes to

ensure a fair comparison. We utilize the APIs in GAP SDK

[19] for bit-insert, XOR, and pop-count operations. Packing

the sign bits of the activations during quantization needs

bit-insert, while bit-wise convolution uses XOR and pop-

count as main operations. Our proposed implementation can

be deployed to other platforms by simply replacing the bit-

insert and pop-count instructions.

As binary convolution with scaling factors XOR-Net-S

has two more steps than XOR-Net without scaling factors,

we only introduce XOR-Net-S for simplicity. We implement

the data preparation part of the proposed XOR-Net-S follow-

ing Algorithm 1 and implement the bit-wise convolution part

following Algorithm 2. Excluding the statements concerning

scaling factors, these algorithms will be binary convolution

without scaling factors.

A. Data Preparation

Data preparation in XOR-Net-S includes packing the sign

bits of the input tensor and calculating the scaling factor

matrix of the input. First, we get the sign bits of the

activations and pack the sign bits into 32/64-bit integers for

bit-level parallelism. For example, one XOR operation on

one packed integer equals to one operation on 64 original

input elements after packing the sign bits into 64-bit integers.

Therefore, packing the sign bits into integers brings high bit-

level parallelism.

We pack the sign bits across the input channel following

BitFlow [21], which keeps the logical input shape as CHW

after the packing. The packing of sign bits is realized by

the bit-insert instruction, i.e. inserting the first one bit of

X32pc+i,h,w to the pack at offset i. In IEEE standard format,

the sign bits of both int and float numbers are the first bit.

We avoid if() statements or sign() functions in the loop by

packing the first bit directly to the container to get good

performance because branches degrade the packing speed.

Figure 2. GreenWaves GAPuino development board. Source: [20]

Second, we decouple the calculation of scaling factors

into two parts. The first part getting the average matrix of the

input is combined with the packing sign bits, and the second

part fake convolution is a standalone for() loop. Therefore,

our implementation reduces a loop that goes through all the

data, bringing better data locality and coding efficiency.

B. Bit-wise Convolution

We use XOR and pop-count operations to get the bit-wise

convolution result O. In the previous section, we have proved

that mathematically XOR-Net binary convolution results are

the same as the binary convolution results that use XNOR

and pop-count. For the reason that XOR is supported by

the instruction sets of CPU and GPU platforms, and using

XNOR has to do one more NOT operation on the XOR

results, so our implementation reduces one NOT operation

compared with traditional binary convolution.

Algorithm 1 Input binarization and calculating scaling

factors
Input: input tensor X , scaling factor matrix from the pre-

vious layer K(i−1)

Output: input sign tensor S, scaling factor matrix K(i)

1: // Get the sign bits and the average matrix of X
2: packed channel = input channel / 32;

3: for each input height h do
4: for each input width w do
5: sum = 0
6: for each packed channel pc do
7: // Use a 32-bit integer to contain the sign bits

8: pack=0

9: for i from 0 to 31 do
10: // Insert the sign bit to the pack

11: bitinsert(pack,Xh,w,32pc+i, 1, i)
12: // Sum up the absolute value of the input

13: sum+ = |X32pc+i,h,w|
14: end for
15: Sh,w,pc = pack
16: end for
17: Ah,w = sum, the first layer

18: Ah,w = sum×K
(i−1)
h,w , otherwise

19: end for
20: end for
21: // Get the scaling factor matrix of the input tensor

22: for each input height h do
23: for each input width w do
24: sum = 0
25: sum+ = Ah+0,w+0

26: ...

27: sum+ = Ah+kh,w+kw

28: K
(i)
h,w = sum

29: end for
30: end for
31: return S,K(i)
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Algorithm 2 XOR-Net bit-wise convolution

Input: input sign tensor S, weight sign tensor W and

scaling factors α, input scaling factor matrix from the

previous layer K(i−1)

Output: convolution result Y , scaling factor matrix K(i)

1: N = c× kh× kw
2: for each filter f do
3: for each output height h do
4: for each output width w do
5: R=0

6: for each packed channel c do
7: R+ = cnt(Sc,h+0,w+0 ⊕Wc,0,0)
8: ...

9: R+ = cnt(Sc,h+kh,w+kw ⊕Wc,kh,kw)
10: end for
11: Of,h,w = N − 2×R
12: Yf,h,w = Of,h,w × αf , not the last layer

13: Yf,h,w = Of,h,w × αf ×K
(i)
h,w, otherwise

14: end for
15: end for
16: end for
17: return Y

Finally, we multiply the bit-wise convolution result O with

the scaling factors of the activations and weights according

to equation (20). What’s more, we utilize filter level paral-

lelism when implementing the bit-wise convolution. Since

there are eight cores on GAP8, the filter number are usually

multiples of 8 and there is no data dependency between the

filters, it is an efficient approach to do parallel convolution

across different filters. As for the binarization and scaling

factor calculation, we perform the parallel processing across

the input height/width/channel wherever possible.

VI. EVALUATION

We evaluate full-precision convolution, XNOR-Net and

XOR-Net-S (binary convolution with scaling factors),

BCNN and XOR-Net (binary convolution without scaling

factors) at layer level with different configurations on the

input size, the input channel and the filter number. We

employ a Ubuntu 16.04 based workstation as the host

machine, then record the execution time by the hardware

timer on GAP8, and record the power consumption through

a USB power meter UM25C. Each test case is executed for

at least 10 times to get the average execution time.

A. Increasing the Input Size

We increase the input size (C-H-W) of the convolution

layers by two accordingly. There are 32 filters with 3×3

kernels in this experiment. Fig.3 shows the execution time

of all the evaluated layers. The latency of binary convolution

layers is much smaller than the latency of full-precision

convolution. XOR-Net-S runs faster than XNOR-Net, and

XOR-Net has less latency than BCNN as well.

Figure 3. The execution time of different convolution layers when
increasing the input size.

Figure 4. The speedup compared with parallel full-precision convolution
when increasing the input size.

The speedup compared with parallel full-precision convo-

lution is shown in Fig.4. The original XNOR-Net achieves

52-73× speedup while the optimized XOR-Net-S achieves

59-83× speedup. Compared with original XNOR-Net, our

method XOR-Net-S has 10-17% speedup. Because there is

no calculation dealing with scaling factors, BCNN achieves

95-114× speedup and XOR-Net has 98-119× speedup com-

pared with parallel full-precision convolution. XOR-Net is

3-5% faster than BCNN because we have reduced a NOT

operation in the binary convolution pipeline. As NOT is

a simple bit-wise operation that finishes within one clock

cycle, and the operands of the NOT operation are already at

the register after the XOR operation, the overall performance

gain of removing the NOT operation is moderate.

We notice that the speedup is relatively higher when the

input channel is 64, so we explore the performance of XOR-

Net by increasing the input channel in the next experiment.

B. Increasing the Input Channel

As observed in the previous section, we perform this

experiment to find out the relationship between the speedup

of XOR-Net and the input channel. We increase the input

channel linearly from 32 to 192, with the input size set to be

C×14×14. There are still 32 filters with 3×3 kernels. The

speedup compared with parallel full-precision convolution

layers with the increasing input channel are shown in Fig.5.

Original XNOR-Net and XOR-Net-S have 58-89× and

68-95× speedup compared with full-precision convolution

respectively, while BCNN and XOR-Net have 103-122×
and 107-129× speedup respectively. When we increase the

number of input channel linearly, the speedup first goes up
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Figure 5. The speedup compared with parallel full-precision convolution
when increasing the input channel.

then become steady. The reason behind such a phenomenon

is that when increasing the input channel, we increase both

the input depth and the quantization overhead. Increasing

the input depth brings better data locality, but the data

locality benefit will not grow much when the input depth

is too large. What’s more, increasing the input channel also

increases the binarization and bit-packing workload. As the

data preparation overhead increases with the input channel,

the speedup cannot grow linearly with the input channel.

C. Increasing the Filter Number

The data preparation overhead in the binary convolution

may affect the speedup. We keep the data preparation

computation as constant by increasing the filter number only

to verify this idea. The input size is 64 × 14 × 14, and we

still use the popular 3×3 kernels in this experiment. Though

popular networks seldom use a small number of filters in

a convolution layer, we include small filter numbers for

experiment purpose. As Fig.6 shows, we obtain the highest

speedup in all the experiments when the filter number is

largest: XNOR-Net and XOR-Net-S have 95× and 109×
speedup respectively, and BCNN and XOR-Net have 128×
and 135× speedup respectively.

As Fig.6 shows, the speedup grows with the increment

of the filter number. The bit-wise convolution accounts for

more time as the filter number increases, and the speedup in-

creases with the bit-wise convolution ratio. This observation

is consistent with the basic logic of binary convolution: using

much faster XOR/XNOR and pop-count operations instead

of full-precision multiplication and accumulation operations

to accelerate CNNs. Therefore, we can get higher speedup

by reducing the data preparation overhead or increasing the

bit-wise convolution ratio in the convolution layer.

D. Power Consumption Analysis

We report the energy efficiency of XOR-Net and other

binary convolution methods in Table II. The input size

for the convolution layer is 64 × 14 × 14 and there are

128 filters with 3 × 3 kernels. The resolution of voltage

of our power meter UM25C is 0.001V (error: 0.05%) and

the current resolution is 0.0001A (error: 0.1%) [22], which

means that we can measure the power to 0.0001 mW. We

Figure 6. The speedup compared with parallel full-precision convolution
when increasing the filter number.

report the power to 0.01 mW for reliability. We execute the

full-precision convolution layer for 20 times and XNOR-Net

layers for 2500 times to make sure there are enough points

of power measurement, then calculate the average value of

a single inference. The speedups in Table II are slightly

different from those reported in the previous subsection

because this is another run.

Binary convolution layers consume no more than 1%

energy compared with full-precision convolution. Our pro-

posed method XOR-Net-S achieves 125× energy efficiency

compared with parallel full-precision convolution, and saves

16% energy compared with the original XNOR-Net. XOR-

Net binary convolution without scaling factors achieves

159× energy efficiency compared with full-precision convo-

lution and is 10% more energy-efficient than BCNN. Though

the speed benefits of XOR-Net compared with BCNN is

moderate, the energy-efficiency of XOR-Net is good due to

the lower arithmetic density.

VII. CONCLUSION

We proposed an optimized computation pipeline XOR-

Net for binary network inference on edge devices. For

the binary convolution without scaling factors, XOR-Net

uses XOR instead of XNOR in the bit-wise convolution

to save a NOT operation. For the binary convolution with

scaling factors, XOR-Net-S further reduces the redundant

full-precision operations. Viewing the whole computation

pipeline across consecutive convolution layers, XOR-Net-

S moves two constants to the scaling factor of the weights

and multiplies the scaling factor matrix of the activations in

the next layer wherever possible. Theoretical analysis shows

that XOR-Net reduces one-third of the bit-wise operations

compared with BCNN and XNOR-Net-S further reduces up

to 40% full-precision operations compared with XNOR-Net

while keeping the same accuracy.

We implemented XOR-Net on an edge device with

bit-level and filter-level parallelism. The experiment re-

sults show that our optimized XOR-Net achieves 81-135×
speedup and about 159× energy efficiency compared with

full-precision layers, and 3%-5% speedup and about 10%

energy efficiency compared with traditional BCNN. The

optimized binary convolution with scaling factors XOR-Net-
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Table II
EXECUTION TIME AND ENERGY CONSUMPTION OF FULL-PRECISION AND BINARY CONVOLUTION LAYERS IN A GIVEN CONFIGURATION.

Conv Layer Type Power(mW) Time(ms) Speedup Energy(mJ) Energy Ratio

Full-Precision 430.03 1074.83 1.0× 462.21 100.00%

XNOR-Net 395.76 11.14 96.5× 4.41 0.95%

XOR-Net-S 380.22 9.76 110.2× 3.71 0.80%

BCNN 384.93 8.28 129.7× 3.19 0.69%

XOR-Net 369.27 7.88 136.4× 2.91 0.63%

S is 10-17% faster improves 19% energy-efficiency com-

pared to the original XNOR-Net. Exploring the performance

by increasing the input channel and the filter number, we

observe that XOR-Net can achieve higher speedup with more

input channels and filters in the convolution layers.
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